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The motion of a fluid through a plane porous medium is accompanied by an 

intensive mixing process, which it is possible to examine by introducing 

into the stream an admixture of particles which do not change the pro- 

perties of the fluid or the parameters of the motion, do not adhere to 

the walls of the pores, and which move with the ambient velocity at each 

point of the porous region. 

The hollow intersecting pores may be regarded as a system of porous 

channels, each of which communicates with all its neighbours. An example 
of such a medium is provided by a layer of sand. 

The local velocity of motion of the particles of fluid is a random 

function of position in the porous region [ 1 I. The propagation of the 

indicator which has been added to the stream is therefore governed by a 
law which is to a certain extent analogous to the law of diffusion of an 

inert ingredient in a turbulent stream. 

The construction of a capillary model of the mechanism of such diffu- 

sion, which can be called convective diffusion, was presented in an 

earlier paper [2 1. It still has some illustrative value because of the 

inadequacy of our knowledge of the relationships connecting the hydraulic 

characteristics of porous channels. 

In the present paper we introduce certain averaged parameters of an 

isotropic homogeneous porous medium which determine the character of con- 

vective diffusion. 

1. Let us consider a stream of homogeneous fluid in an isotropic 
homogeneous porous medium. Isotropy is assumed in the sense of invariance 

of the distribution of the statistical characteristics the medium relative 

to bulk rotations or mirror reflections. lhe flow of the fluid will be 

defined by the mean velocity vector. The average of the velocity, as well 

as that of the characteristics of the porous medium, is taken over a 
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representative group of samples. Moreover, it is assumed that the results 

of the averaging do not depend upon the choice of points in the porous 

region, i.e. it is possible to take a point, located on any surface inter- 

secting the medium, on any arbitrary curve described in the medium. Thus, 

for example, we can average over all points of the porous region located 

on an arbitrary plane section of an elementary macrovolume. It is assumed 

that we can choose an elementary macrovolume such that it will contain a 

representative group of samples, whilst the averaged characteristics of 

the current are uniform throughout its extent. 

A fluid particle at different instants of time will move with changing 

velocity, specifically as a result of the intercommunication between the 

hollow pores since, if the porous region were constructed of continuous 

tubes which did not connmnicate with one another, then the particle would 

not pass through the whole representative group of samples (see Section 

4). 

If at the initial instant of time the particle was located at the 

origin of a system of coordinates moving with the mean velocity, then 

after time t its coordinates will be 
1 I 

* 1’, (t) =-: 
\ 
Ii 

r, (T) d7 := \ [ZI, (5) - ia] dr (1.1) 

0 

where ua( T 1 is the component of velocity along the axis a at the moment 

of time 7; there and henceforth the bar denotes the averaged value of the 

quantity. 

The expression (1.1) is the integral of the random function v,(t). 

From the limit theorem in the theory of probability it follows that this 

random integral has a distribution close to the normal distribution for 

an arbitrary distribution law of the function v,(t), if v,(t) assumes 

statistically independent values when separated by certain sufficiently 

small intervals of time 7()(t >> ~~1. 

If at an arbitrary instant of time there exists a three-dimensional 

normal distribution, i.e. the probability density of finding the partide 

at the point with coordinates x 1' x2 and x3 has the form 

’ Al AL2 AL3 \ 

then, regarding $ as the relative concentration of 

we see that (1.2) is the solution of the diffusion 

of instantaneous source: 

the added particles, 

equation for a type 
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where Da is the axial component of the diffusion coefficient: 

D, = xm2 I (q (1.4) 

It appears that such a statistical approach to the consideration of 

the motion of particles in a porous medium was first made by Scheidegger 

[3 I, who assumed that the medium consisted of perfectly identical pores 

and so reduced the problem to the model problem of randomly wandering 

particles. 

'lhe coefficient of diffusion along the axes is different, therefore it 

must be a tensor of the second rank. In equation (1.3) the principal axes 

of this tensor are taken as the system of coordinates. 

2. If in an isotropic homogeneous porous medium there is a homogeneous 

stream of fluid (the direction of the stream being constant), then the 

coefficient of diffusion, characterising the mixing process described in 

the foregoing section, is invariant relative to a rotation about the 

direction of the mean velocity, and to mirror reflections relative to 

planes including the mean velocity vector or perpendicular to this vector. 

In this case [4] the coefficient of diffusion will have the form of an 

axisymnetric isotropic point tensor 

(2.1) 

where A and B are constants, ui ' is the component of the perturbation of 
mean velocity and Iii is the unit tensor. 

In the case of turbulent diffusion in the field of a homogeneous stream 

the coefficient of diffusion is an isotropic tensor Dij= BIij, since the 

entire region of mixing moves as a whole with the mean velocity; in the 

region of mixing, the direction of the vector of mean velocity is on a 

par with other directions. In the case now being considered the mixing 

region - the porous medium - is essentially fixed, whilst the current 

through it has an axis of syrnnetry - the direction of mean velocity. 

let us consider the most important motion - the motion governed by 

D'Arcy's law, in which inertial forces can be neglected [5 1. From the 
characteristics of such motions, the mean velocity u, fluid viscosity p 

and a certain characteristic length of the porous medium, it is impossible 

to construct any dimensionless combination, and evidently the coefficient 

of diffusion, having the dimension cm2secq1, is equal [6 1, up to a di- 

mensionless constant multiplier, to the product of the mean velocity and 

the characteristic length already mentioned. 

In so far as the diffusion process under consideration is not one- 

dimensional, the characteristic length will, generally speaking, not be 

a scalar quantity, but must be a certain tensor. We shall call this the 

dispersion tensor of the porous medium. Since the medium is isotropic, 
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then the point dispersion tensor must be a tensor of even rank [ 4 1 . ‘he 
diffusion coefficient is then represented in the form of the product of 

dispersion tensor with a quantity connected with the mean velocity vector 

and having the dimension of a velocity. 

If we take the diffusion coefficient in the form of the product of a 

certain isotropic tensor of the second rank with the modulus of the 

vector of mean velocity, then all the components of the diffusion coeffi- 
cient are identical: the diffusion coefficient is a spherical tensor. The 
mixing is isotropic, and the constant A of expression (2.11 must be equal 

to zero. This type of representation is adopted in relation to turbulent 
diffusion in the field of a homogeneous stream [7 I . 

We can represent the diffusion coefficient in the form of the product 
of a scalar, representing dispersion in the porous medium, with a tensor 

consisting of the components iik and ii 1o. It is easy to show that then the 

dispersion will arise only in the direction of the vector of mean velo- 
city whilst, in the directions orthogonal to this, it will be zero: in 

the expression (2.1) we must have B = 0. This representation is adopted 

in the capillary models of the diffusion process in porous media [ 2 I. 

‘lhe dispersion tensor of a porous medium can be given in the form of 
a tensor of the fourth rank, which by virtue of the isotropy of the 

medium [ 4 1 is characterised by three constants: 

[QijkZI = [Hi] = Cd P-2) 

‘lhen the components of the diffusion coefficient are determined in the 
following way: 

-- -- 
Dij = QijklUkUl’ = QijklUkUl/ 1 i 1 (2.3) 

where sumnation is to be carried out over the repeated indices. 

Since the diffusion coefficient is a symnetric tensor, then H, = H 
by virtue of the equivalence of the indices k and 1. It is easy to shzw 

that the expression (2.3) is equivalent to formula (2.11, with 

If we take for the dispersion tensor a tensor of higher even rank, 

then the coefficient of diffusion is equal to 

Dij = Qijkl.. .mUkUl’ . , . Urn” (2.43 

It can be shown that (2.4) in the general case reduces to the ex- 
pression (2.11, and by virtue of the isotropy of the medium and the 
equivalence of the indices, over which the sumnation occurs, it is de- 
termined by two constants. 
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Accordingly, formula (2.1) for the diffusion coefficient is very 

general. The physical significance of the two postulated constants A and 
B or HI and H, is to be explained on the basis of the representation made 
as to the mechanism of mixing in porous media. 

3. At each point of the porous region the vector of mean velocity is 

modified in a random manner into the local velocity. Moreover, generally 

speaking, the direction of the velocity as well as the value of its 

modulus will be changed. 'Ihe transformation has the form: 

Ui = Tijuj (3.1) 

‘Ihe components of the tensor Tii are random quantities having different 

values for each sample (at an arbrtrary point of the porous region). We 

shall call the tensor Tij the local tensor of the porous medium. We shall 

consider below those flows for which inertial forces can be completely 

neglected, whence it follows from dimensional analysis that the components 

Tij do not depend upon the magnitude of the mean velocity. 

Moreover, we make the following hypothesis: the components of the 

local tensor of the porous medium do not depend upon the direction of the 

mean velocity. 

From averaging relation (1.1) it is obvious that T.. is the unit 

tensor. The dispersion velocity (when projected on thL'axes a) is ex- 

pressed by the product of components of the fourth rank, characterising 

the porous medium: 

By virtue of the isotropy of the porous medium and the equivalence of 

the indices i and j all the averaged products TaiTaj will have the form: 

i.e. all the products in which i f j will vanish. 'Ihe expression (3.2) 

can be simplified: the factor in the parentheses is the dispersion of 

the components Tai 

D (u,) = (T,iTp_i-Imi)ui’ = D(T,i)G2 

Now, making use of the relation (l.l), let us find the mean square of 

the transport, or dispersion, in a moving system of coordinates: 

(3.5) 

For long duration the dispersion (3.5) can be represented in the follow- 

ing form [ 7 I : 
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Fa,” = 20 (urn) Lat (3.6) 

where La is a quantity analogous to the Lagrange scale of turbulence. 

Starting from dimensional considerations, let us set 

L,=L=l/lUl (3.7 

where 1 is a certain "mixing length" of the porous medium- a scalar by 

virtue of its isotropy. 

Making use of the relation (1.4) and taking account of the fact that 

the coefficient of diffusion is referred to its principal axes, we obtain 

DII- D,= D(z#f(~(, D,,= D,== D(uz)l/liI 

D,, = D, = D ( UJ 1/ 1 i / (3-S) 

i.e. the properties of the porous medium which are under consideration 

are characterised by a tensor of the fourth rank, and the relations (3.8) 

and (2.4) must be equivalent. The following relation therefore holds: 

H, = CJ, H, = 0,5 (2C, - 1) I (3.9) 
Moreover, (3.10) 

BE Hllul = D(T,i)Zj Ul, A=2H,lul=[D(T,,)-D(T,i)JZIuJ, &#i 

Accordingly, the coefficient of diffusion, when referred to the 

principal system of coordinates, has the form: 

D1 = D(T,,)Zu = A,& u = LI, Gz = g = 0 

D, = D (T,,) I u = A$, D, = Dp 

Dij=O when i#j 

(3.11) 

4. For flows subject to D'Arcy's law the quantities Tij, H and 1 are 
determined only by the structure of the porous medium. Similar results 

are obtained for flows subject to the quadratic law 18 I, when the 

inertial forces only are allowed for, although the numerical values of the 

quantitites are, generally speaking, different in the two cases. In the 

case where there are both viscous and inertial forces, these quantities 

will depend upon the Reynolds number, i.e. upon the velocity. This is con- 

firmed by experiments - the coefficien t of diffusion proves to be pro- 

portional to the mean velocity of the flow in the region of validity of 

D'Arcy's law C9 I, and in the region of validity of the quadratic law of 

filtration (with the Reynolds number greater than 500) [lo 1, whilst in 

the intermediate zone (Reynolds number from 100 to 500) the dependence of 

the coefficient of diffusion upon velocity becomes more complex cl0 1. In 
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the paper referred to [lo I, the characteristic linear dimension was 

taken to he the diameter of the added particles. 

If there arises the necessity of taking account of molecular diffusion, 

then on the assumption of no correlation between it and convective diffu- 

sion the effective diffusion coefficient is 

Da‘= Da-W, 

'Ihe coefficient of molecular diffusion D, usually turns out to be many 

times smaller than 0,. 

The supposition of no correlation between these two processes is 

justified for porous media with intercommunicating pore spaces, for which 

the results of Section 1 are also verified. 

In a number of papers concerning diffusion in a filtrating fluid, for 

example [ill, deductions are made concerning the proportionality of the 

coefficient of diffusion to the square of the velocity of filtration. In 

these studies the porous medium is represented as a system of capillaries 

which are isolated from one another, penetrating continuously from one 

face of the medium to the other. Taylor [ 12 1 showed that the consequence 
of a steady parabolic distribution of velocity across the capillary 

section together with lateral molecular diffusion was that the diffusion 

coefficient for laminar flow in the capillary had the form: 

(4.2) 

where D, is the coefficient of molecular diffusion in the fluid, d is the 
diameter of the capillary, uO is the maximum velocity across the section 

and y is a certain numerical parameter. If this result is applied to each 

capillary of the system, then the result referred to above is indeed ob- 

tained. Here we have complete correlation between the molecular and con- 

vective diffusion. 

In porous media with intercommunicating pore spaces, however, the 

fluid particles which are moving in one of the pores along its axis, for 

example, and therefore with the maximum possible velocity, will generally 

speaking not have the maximum velocity in the next pore but will take up 

some other velocity. 

We notice that from certain intuitive arguments it follows that the 

quantity 1 must be about half the diameter of the grains for uncemented 

porous media. For cemented porous media it is about the mean value of the 

segments of an arbitrarily constructed straight line, included between 

the points of intersection of this line with the section contours of the 

framework of the porous medium. If the porous channels in the medium could 

be separated, then I would be equal to half the length of the average 
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12 1. For a more precise definition of 1, however, and thence also of the 

dispersion velocity involved in the coefficient of diffusion, it is 

necessary to introduce supplementary theoretical or experimental evidence. 

It can be assumed that two porous media have similar porous voids if 

they are compounded in an identical way from particles of a given shape 

but different sizes; for simplicity we shall assume the size of the 

particles to be uniform in each medium, although the same argument could 

be extended also to the case with any practical particle composition. 

These media will differ only in the linear scale, and consequently the 

flow of the fluids in them is completely similar in the case of identity 

of the Pqnolds numbers. Therefore the ratio of the viscosities of the 

fluids must be equal to the reciprocal of the ratio of the diameters of 

the particles (6' and S'T.1. Then we can say that the dispersion components 

Tij in such media are equal. 

Hence, for equal mean flow velocities we must have the relation 

D’ 1’ 6’ 
Ix- 
D,” -1”-=6” (4.3) 

where primes are used to distinguish between quantities related to the 

one medium or the other. 

lhe experimental testing of equation (4.3) is completely possible, 

for example on spheres of different diameters, and its accomplishment 

either gives confirmation of the arguments developed here or exposes the 

need for corrections. Accordingly, such an experiment can confirm the 

validity of the relationship 1 = 0.5~6 to within a certain constant 

factor 7. 

'Ihis constant factor '1 will no longer depend upon the value of 6 and 

can be determined once and for all by experiment for a medium of the 

given type, e.g. for a cemented or an uncemented sandstone or limestone, 

etc. For this it is necessary to measure the actually obtaining local 

velocity, but such measurements are in practice extremely difficult. 

'Ihe motion of a fluid only in a single pore and in the few neighbour- 

ing ones is connected by the Navier-Stokes equations, whilst the motion 

in a pore remote from that under consideration will not be subject to 

the same relation because the distribution of velocity, normal and tan- 

gential to an arbitrary plane section, is determined by the random micro- 

structure of the porous medium, and one can postulate the hypothesis con- 

cerning the normal law of distribution of all the velocity characteristics 

of the flow. In this case the knowledge of the mean value of the velocity 
and its dispersion completely determines the values of the local velo- 
cities. 

5. Equation (1.31 can be written in a fixed system of coordinates as 
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where m is the porosity, w is the velocity of filtration (w = mu), the 

axis of x1 is directed along the vector w, and A, = A,. 

Equation (5.1) is valid for a homogeneous flow. In the general case 

it has the form: 

(5.2) 

If in the porous medium there is a homogeneous filtration current and 

at some arbitrary point we add an indicator with a discharge (2 of ele- 

ments in unit time, then in a certain time the indicator becomes dispersed, 

and the lines of equal concentration form a set of "pear-shaped" curves. 

The shape of these curves is characteristic of the diffusion parameters 

of the porous medium. 

For the solution of problems concerning the fixed-point source con- 

centration in a homogeneous filtration flow, we can make use of analogous 

results in turbulent diffusion [7 1. Ihe average (nonrelative) concentra- 

tion at the point x1, x2 or x3 at the instant of time t is equal to the 

sum of the concentrations arising from a source after a time from t0 to 

t, where t0 is the time of start of operation of the source: 

t 

u?= @)(x1,x2,x3,t-a)da- s (5.31 
to 

1 

Q (2x)-“2 
==\ ~~z,,z exp {-~[(xl-~~-u))z+~-~]}da 

f. (3 22 5) 1 2 . 

In the case of a continuously acting source we have to set t0 = - 00. 

We thus obtain the steady distribution of relative concentration pre- 

sented in the paper [7 1. In the same way the solution can be obtained 

for the problem of the steady distribution of mean concentration arising 

from an infinite line diffusion source. This problem has practical im- 

portance in filtration* - namely, such conditions arise in the plane 

homogeneous flow of a fluid in a stratum of finite thickness, when the 

indicator is added through one of a series of bore-holes uniformly placed 

through the thickness of the stratum. Measuring the concentration at at 

least two other bore-holes, we can determine the field of concentration, 

and consequently also the diffusion parameters of the stratum. It is 

* The author is greatly indebted to V.M. Shestakov for consideration of 
this question. 
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assumed that through all the said bore-holes no significant quantity of 
fluid either enters or leaves the stratum, in order not to disturb the 

conditions of homogeneity of the flow. 

'lhe solution has the form [7 I : 

Qjfi CD= ._ 
2xw v hJ, 

exp (- .$) K. (+Ji$& + $ ) (5.4) 

Let us seek such a solution of the homogeneous linear problem of mixing 

of a dye with the main fluid in motion in a porous medium. In this case 

equation (5.3) will have the following form: 

a+ mar =hwa21CI-_w!Y!_ 
1 I322 ax ’ 

-oo<X<~, t>o 

with the initial condition 

&x9 0) = f(x) (5.6) 

'lhe solution is easy to find if we reduce equation (5.5) to the 

general equation of heat conduction by the substitution 
t 

px--s 
m ’ 

s = w(t)& s 
0 

(5.T) 

and make use of the representation of the solution of the equation in the 

form of a Poisson integral. 'Ihen in the case of a rectangular shape of 

the initial distribution of the concentration, f(y) = 0 when Iy ( > n 
andf(y)=lwhenlyj<a, the solution will have the following form: 

! 

CD,= QrS,(x1,x2,xg,t--ct)da- 
s 

‘he formula (5.8) is found to be completely confirmed by the results 

of experiments [13 I , where the coefficient of diffusion 0 = h,w was de- 
termined at five experimental points IHO, t): 

D, = 2.60. lo-‘, D, = 1.‘70.10-2, D, = 1.54. IO-‘, 

D, L 1.80.10-2, D, = 1.63. lo-" CM~ cex-r 

The mean value of the diffusion coefficient Dm= 1.92 x 10-*cm*~ec-~, 

and the mean value of A, is equal to 0.107 cm. 

Accordingly, Dm >> D, = 10m4 - 1C5 cm'sec- ' which confirms the 

essentially different nature of the mixing from molecular diffusion. 

In conclusion the author records his pleasant duty to thank G.I. 

Barenblatt for valuable discussions on the questions touched on by this 

paper. 
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